

l Hohenheim logo	Methods
Intro Methods Digression Data Results Conclusion	 GR is an agricultural product but common agricultural economics methods for impact assessment cannot be used Beneficiaries of GR have no purchasing power The benefit of GR is improved health How to measure health across target groups and different health outcomes? Namely night blindness, corneal scars, blindness, measles & child mortality

l Hohenheim		Methods
,0,	yu	
		 Counting VA deficient individuals neglects the severity of different health outcomes
		 For premature mortality the years of life lost (YLL) can be counted
Intro		 In the other cases the years lived with disability (YLD) can be counted
<u>Methods</u>		 The severity of these health outcomes can be weighted relative to death
Data Results		Then the burden of a disease can be expressed in disability-adjusted life years (DALYs) lost
Conclusion		

	"Content" (μg/100g)	VA content (µg/100g)	Grams to reach 750 μg VA	Fat content (g/100g)
Golden Rice (SG	R2)	233-1,033	72-321	0.5
Taken from Shiva (2000)		Based on ((20	Gopalan et al. (19 04) and Erhardt (989), USDA (2005)
Cabbage	217	9	8,333	0.1
Jackfruit	54	15	5,000	0.1
Tomato, ripe	32	42	1,786	0.2
Orange	35	92	815	0.2
Radish leaves	750	221	339	0.4
Mango, ripe	500	229	1.5 fruits	0.4
Milk, cow	50-60	64	1,172	6.5
Egg, hen	300-400	420	4 eggs	13.3

l Hohenheim	Methods
Intro Methods Digression Data Results Conclusion	 Given the health gains expressed in DALYs the improvement relative to the overall disease burden can be derived The absolute number of DALYs saved can be juxtaposed to the overall R&D costs of GR to obtain a cost-effectiveness measure (\$/DALY) To take account of the uncertainty surrounding ex ante analyses a scenario approach is used

Hohen	Data			
/Q	jo	Disability weight	Duration (yrs)	Incidence (%)
	Children ≤ 5 years			
	Nightblindness	0.05	1.00	100% of 1.03
	Corneal scars	0.20	64.40	10% of 0.02
	Blindness	0.50	64.40	10% of 0.02
	Measles (simple)	0.35	0.03	10% of 2.70
Intro	Measles (complications)	0.70	0.06	10% of 2.70
Methods	Under five mortality	(1.00)	64.40	3% of 9.30
Digression	Pregnant women			
<u>Data</u>	Nightblindness	0.10	0.42	100% of 6.62
Results	Lactating women			
Conclusion	Nightblindness	0.10	0.50	100% of 5.52

l Hohenheim — logo		Data			
		Impact scenario	Low	High	
		β-carotene content in GR (µg/g)	14	31	
		Post-harvest loss of β -carotene (%)	80	35	
		Conversion of β -carot. in GR into VA	6:1	3:1	
Intro Methods		Coverage of GR 15 yrs after release			
Digression		- government shops & schools (%)	20	100	
<u>Data</u>		- on the free market (%)	14.3	50	
Results Conclusion		- in rice products (%)	10	50	

Scenario	Low impact		High impact	
	Years	Undis- counted (US\$)	Years	Undis- counted (US\$)
International R&D	2001-07	7.5 m	2001-07	3.3 m
R&D within India	2002-11	1.2 m	2002-09	0.8 m
Regulatory process	2003-12	2.5 m	2003-10	2.2 m
Release of GR	2012-13		2010-11	
Social marketing	2013-15	15.6 m	2011-15	30.7 m
Maintenance breeding	2013-29	2.1 m	2011-29	1.9 m
Total cost (discounted at 3%)	2001-30	21.4 m	2001-30	27.9 m
Average annual cost	2001-30	0.7 m	2001-30	0.9 m

l Hohenheim		Results			
10	go				
		Impact scenario	Low	High	
		Annual burden of VAD (DALYs lost)	2.3 m	nillion	
		No. of lives lost due to VAD each year	71,0	600	
Intro Methods		Reduction of the burden through GR	-8.8%	-59%	
Digression Data		No. of children's lives saved through GR	5,500	39,700	
Results Conclusion		Reduction of the burden through the consumption of coloured rice landraces	-0.1%	-3.3%	

Hohenheir	Results			
logo	Impact scenario	Low US\$/[High DALY	
	r _{DALYs} = 3%, r _{US\$} = 3%	19.40	3.06	
	r _{DALYs} = 0%, r _{US\$} = 3%	4.76	0.74	
Intro	r _{DALYs} = 10%, r _{US\$} = 10%	103.5	14.76	
Methods Digression	World Bank benchmark (US\$/DALY)	20	00	
Data <u>Results</u>	WHO standard for valuing DALYs (US\$)	620 -	1,860	
Conclusion	US\$/DALY saved with supplementation	134 -	599	

l Hohenheim		Conclusion
10	yu	
		 Future research has to determine the exact size of crucial parameters like
		 the β-carotene content under field conditions
		 the magnitude of post-harvest losses of β-c.
		 the agronomic performance of GR
Intro		 the acceptance of GR by consumers
Methods		 Issue of product dilution in informal seed
Digression		systems needs to be solved (for export)
Data		 The safety of GR will have to be tested
Results		and regulated
Conclusion		

